
FSM 1 : Intro to
Finite State Machines

©COPYRIGHT CHUA DINGJUAN. ALL RIGHTS RESERVED.

o FSM : Finite State Machine

o Synchronous Machine with “states” of operation

o At each active clock edge, combinational logic computes
outputs and next state,

as a function of inputs and present state

o Examples ?

What is a FSM?

Digital Fundamentals Page 2

Combinational
Logic

Q D

Flip-Flops

B

C

D

Z

A

CLK

Outputs

Next
State

Present
State

n

Inputs

n

Mealy and Moore

Moore vs Mealy FSMs : Different Output Generation

Page 3

o Mealy machine: output is a function of a present state & inputs.

o Moore machine: output is a function of a present state only.

Digital Fundamentals

State
Memory

(FFs)CLK

Next State

Next State
Logic

Output
LogicInputs Outputs

Current
State

Next State

Output
Logic

Outputs

Current State

CLK

Inputs Next State
Logic

State
Memory

(FFs)

Structure

Digital Fundamentals Page 4

State Memory
o set of n FFs store current state of machine; up to 2n states.
o FFs can be J-K or D, but D FFs simpler (1 input vs. 2 inputs for J-K FFs)

Next State Logic
o combinational circuit which decides the next state of the

machine based on current state and inputs:
Next state = f (inputs, current state)

Output logic
o combinational circuit which creates the output

Moore : outputs depend on current state
outputs = g (current state)

Mealy : outputs depend on the current state & inputs
outputs = g (inputs, current state)

Traffic Problem…

Digital Fundamentals Page 5

At a busy intersection on
campus…

Students from the Law faculty
are burying their heads in
their books and are not
looking where they are going.

Students from the Business
faculty are occupied on their
phones and aren’t looking at
where they’re going either….

B
u

sin
e

ss
Stre

et

Law Avenue



Law Avenue

B
u

sin
e

ss
Stre

et

Traffic Problem…

Digital Fundamentals Page 6

1) Sensors TB and TL is TRUE when students are

present. False otherwise.

2) Control traffic lights LL, LB to be green, yellow, red.

3) Reset to Green on Law Ave and Red on Business St.

TB

TB

TL TLLLLL

LB

LB

Design a FSM to control the traffic lights!

Every 5 sec, check the traffic and decide what to do!

• If the lights on Business St. are green and there’s

no traffic, the lights turn yellow for 5 secs. After

that, they turn red and Law Ave. lights turn green.

• So on, so forth.

• If there is traffic, lights do not change.

Step 1 : State Transition Diagram

o Overall Block Diagram of System

o Design State Transition Diagram
to represent FSM

Page 7

S0
LL: green
LB : red

CLK

State Transition Diagrams

o Circles represent states.
* Each state specifies values for all outputs (Moore)

o Arcs represents transitions between states.
* Labels  input that triggers the transition.
* Transitions take place on the active edge of the clock.

o Arc from outer space indicates initial state upon reset

o Within each state, for any combination of input values,
there’s exactly one applicable arc.

Digital Fundamentals Page 8

S0
LL: green
LB : red

RST

S1
LL: yellow

LB : red

TL = 0
TL = 1

“At clock edge, If

TL=0, go to State 1.”

“At clock edge, if

TL=1, stay in State 0.”

Desired outputs

in current state.

Desired outputs

in current state.

(Moore / Mealy)?

Arbitrary state

names.

Start at this

state upon reset.

Step 2 : Next State Table

1. From STD, find the number of states

2. Number of bits / FFs required = ?_ to go through these states

3. State Assignment

4. Next State Table

Digital Fundamentals Page 9

Current State Inputs Next State

S TL TB S+

S0 0 X S1

S0 1 X S0

S1 X X S2

S2 X 0 S3

S2 X 1 S2

S3 X X S0

State S1S0

S0 00
S1 01
S2 10
S3 11

Current State Inputs Next State

S1 S0 TL TB S1+ S0+

0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

Step 2 : Next State Table

5. State Generator Circuit

Digital Fundamentals Page 10

D Q

D Q

Next State Current State

S1
+

S0
+

S1

S0

CLK

01

0101011

SS

TSSTSSSSS BB





BL TSSTSSS 01010 

TL

TB

Step 3 : Output Logic

1. Output Truth Table

Digital Fundamentals Page 11

Current State Outputs

S1 S0 LL1 LL0 LB1 LB0

0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output L1L0

Green 00
Yellow 01

Red 10

01011 SSLSL LL 

01011 SSLSL BB 

D Q

D Q

Next State

Current

State

S1
+

S0
+

S1

S0

CLK

TL

TB

LL1

LL0

LB1

LB0

RST

RST

Verilog~! – Code Structure

Digital Fundamentals Page 12

always @

(posedge clk)

Sequential
Circuit

Combinational
Circuit

Combinational
Circuit

assign y =always @ (*)

Output
Logic

Outputs

CLK

Inputs
Next State

Logic

State
Memory

(FFs)

FSM in Verilog

Digital Fundamentals Page 13

module fsm(input clk, … , output … …);

reg __ state, nextstate;

parameter S0 = 2’b00;

parameter S1 = 2’b01;

always (*)

case (state)

S0 : nextstate = S1;

S1 : nextstate = S0;

endcase

always @ (posedge clk, posedge reset)

if (reset) state <= S0;

else state <= nextstate;

assign y = (state == S0);

endmodule

parameter is used to define constants within a
module, improving code readability.

Sequential Logic :
Use <= to infer flip-flops.
Is this Sync or Async reset?

Next State Combinational Logic :
(*) code is triggered whenever any

input changes  combinational logic.
case represents next state table.

Equality Comparison :
a == b evaluates to 1 if a equals b.

Output Logic : Use assign to infer
combinational logic.

FSM Traffic Controller in Verilog

Digital Fundamentals Page 14

module traffic (input clk, reset,

TL, TB, output [1:0] LL, LB);

reg [1:0] state, nextstate;

parameter S0 = 2’b00, S1 = 2’b01,

S2 = 2’b10, S3 = 2’b11;

parameter green = 2’b00,

yellow= 2’b01, red= 2’b10;

always @ (*) begin

case (state)

S0: nextstate = TL ? S0 : S1;

S1: nextstate = S2;

S2: nextstate = TB ? S2 : S3;

S3: nextstate = S0;

endcase

end

always@(posedge clk, posedge reset)

begin

if (reset) state <= S0;

state <= nextstate;

end

//What’s the diff between these

//2 ways of coding output logic ?

assign LL

= {state[1], ~state[1] & state[0]};

assign LB =

(state== S0 || state== S1) ? red :

((state == S2) ? green : yellow);

endmodule

Timing Diagram

Digital Fundamentals Page 15

CLK

Reset

TL

TB

State

LL

LB

Traffic Controller

o Check the waveforms in the
timing diagram below…

Are they correct?

Digital Fundamentals Page 16

XX
S0 S1 S2 S3

green yw red

red green yw

